Supersingular K3 Surfaces in Characteristic 2 as Double Covers of a Projective Plane

نویسندگان

  • ICHIRO SHIMADA
  • I. SHIMADA
چکیده

For every supersingular K3 surface X in characteristic 2, there exists a homogeneous polynomial G of degree 6 such that X is birational to the purely inseparable double cover of P defined by w = G. We present an algorithm to calculate from G a set of generators of the numerical Néron-Severi lattice of X. As an application, we investigate the stratification defined by the Artin invariant on a moduli space of supersingular K3 surfaces of degree 2 in characteristic 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supersingular K3 Surfaces in Odd Characteristic and Sextic Double Planes

We show that every supersingular K3 surface is birational to a double cover of a projective plane.

متن کامل

On Automorphisms Group of Some K3 Surfaces

In this paper we study the automorphisms group of some K3 surfaces which are double covers of the projective plane ramified over a smooth sextic plane curve. More precisely, we study some particlar case of a K3 surface of Picard rank two. Introduction K3 surfaces which are double covers of the plane ramified over a plane sextic are classical objects. In this paper we determine the automorphisms...

متن کامل

Rational double points on supersingular K3 surfaces

We investigate configurations of rational double points with the total Milnor number 21 on supersingular K3 surfaces. The complete list of possible configurations is given. As an application, we also give the complete list of extremal (quasi-)elliptic fibrations on supersingular K3 surfaces.

متن کامل

On Normal K3 Surfaces

We determine all possible configurations of rational double points on complex normal algebraic K3 surfaces, and on normal supersingular K3 surfaces in characteristic p > 19.

متن کامل

Dynkin Diagrams of Rank 20 on Supersingular K3 Surfaces

We classify normal supersingular K3 surfaces Y with total Milnor number 20 in characteristic p, where p is an odd prime that does not divide the discriminant of the Dynkin type of the rational double points on Y .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004